Copied to
clipboard

G = C42.694C23order 128 = 27

109th non-split extension by C42 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.694C23, C4.1732+ 1+4, (C8×D4)⋊48C2, C4⋊Q8.32C4, C86D443C2, C4.40(C8○D4), C4⋊D4.27C4, C41D4.19C4, C4⋊C8.366C22, (C4×C8).338C22, C42.224(C2×C4), (C2×C4).676C24, (C2×C8).437C23, C4.4D4.20C4, (C4×D4).302C22, C23.43(C22×C4), (C22×C8).94C22, C42.12C454C2, C22⋊C8.235C22, (C2×C42).783C22, C22.200(C23×C4), (C22×C4).943C23, C2.50(C22.11C24), (C2×M4(2)).246C22, C22.26C24.27C2, C2.30(C2×C8○D4), C4⋊C4.169(C2×C4), (C2×D4).184(C2×C4), C22⋊C4.44(C2×C4), (C2×C4).82(C22×C4), (C2×Q8).125(C2×C4), (C22×C8)⋊C235C2, (C22×C4).356(C2×C4), (C2×C4○D4).96C22, SmallGroup(128,1711)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.694C23
C1C2C4C2×C4C22×C4C2×C4○D4C22.26C24 — C42.694C23
C1C22 — C42.694C23
C1C2×C4 — C42.694C23
C1C2C2C2×C4 — C42.694C23

Generators and relations for C42.694C23
 G = < a,b,c,d,e | a4=b4=d2=1, c2=b, e2=a2, ab=ba, ac=ca, dad=a-1b2, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=a2c, ede-1=a2d >

Subgroups: 332 in 205 conjugacy classes, 128 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C4×C8, C22⋊C8, C4⋊C8, C2×C42, C4×D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C22×C8, C2×M4(2), C2×C4○D4, (C22×C8)⋊C2, C42.12C4, C8×D4, C86D4, C22.26C24, C42.694C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C8○D4, C23×C4, 2+ 1+4, C22.11C24, C2×C8○D4, C42.694C23

Smallest permutation representation of C42.694C23
On 64 points
Generators in S64
(1 41 55 57)(2 42 56 58)(3 43 49 59)(4 44 50 60)(5 45 51 61)(6 46 52 62)(7 47 53 63)(8 48 54 64)(9 28 38 20)(10 29 39 21)(11 30 40 22)(12 31 33 23)(13 32 34 24)(14 25 35 17)(15 26 36 18)(16 27 37 19)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63)(2 64)(3 57)(4 58)(5 59)(6 60)(7 61)(8 62)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(41 49)(42 50)(43 51)(44 52)(45 53)(46 54)(47 55)(48 56)
(1 33 55 12)(2 13 56 34)(3 35 49 14)(4 15 50 36)(5 37 51 16)(6 9 52 38)(7 39 53 10)(8 11 54 40)(17 59 25 43)(18 44 26 60)(19 61 27 45)(20 46 28 62)(21 63 29 47)(22 48 30 64)(23 57 31 41)(24 42 32 58)

G:=sub<Sym(64)| (1,41,55,57)(2,42,56,58)(3,43,49,59)(4,44,50,60)(5,45,51,61)(6,46,52,62)(7,47,53,63)(8,48,54,64)(9,28,38,20)(10,29,39,21)(11,30,40,22)(12,31,33,23)(13,32,34,24)(14,25,35,17)(15,26,36,18)(16,27,37,19), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63)(2,64)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,49)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56), (1,33,55,12)(2,13,56,34)(3,35,49,14)(4,15,50,36)(5,37,51,16)(6,9,52,38)(7,39,53,10)(8,11,54,40)(17,59,25,43)(18,44,26,60)(19,61,27,45)(20,46,28,62)(21,63,29,47)(22,48,30,64)(23,57,31,41)(24,42,32,58)>;

G:=Group( (1,41,55,57)(2,42,56,58)(3,43,49,59)(4,44,50,60)(5,45,51,61)(6,46,52,62)(7,47,53,63)(8,48,54,64)(9,28,38,20)(10,29,39,21)(11,30,40,22)(12,31,33,23)(13,32,34,24)(14,25,35,17)(15,26,36,18)(16,27,37,19), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63)(2,64)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,49)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56), (1,33,55,12)(2,13,56,34)(3,35,49,14)(4,15,50,36)(5,37,51,16)(6,9,52,38)(7,39,53,10)(8,11,54,40)(17,59,25,43)(18,44,26,60)(19,61,27,45)(20,46,28,62)(21,63,29,47)(22,48,30,64)(23,57,31,41)(24,42,32,58) );

G=PermutationGroup([[(1,41,55,57),(2,42,56,58),(3,43,49,59),(4,44,50,60),(5,45,51,61),(6,46,52,62),(7,47,53,63),(8,48,54,64),(9,28,38,20),(10,29,39,21),(11,30,40,22),(12,31,33,23),(13,32,34,24),(14,25,35,17),(15,26,36,18),(16,27,37,19)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63),(2,64),(3,57),(4,58),(5,59),(6,60),(7,61),(8,62),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(41,49),(42,50),(43,51),(44,52),(45,53),(46,54),(47,55),(48,56)], [(1,33,55,12),(2,13,56,34),(3,35,49,14),(4,15,50,36),(5,37,51,16),(6,9,52,38),(7,39,53,10),(8,11,54,40),(17,59,25,43),(18,44,26,60),(19,61,27,45),(20,46,28,62),(21,63,29,47),(22,48,30,64),(23,57,31,41),(24,42,32,58)]])

50 conjugacy classes

class 1 2A2B2C2D···2H4A4B4C4D4E···4L4M···4Q8A···8P8Q···8X
order12222···244444···44···48···88···8
size11114···411112···24···42···24···4

50 irreducible representations

dim111111111124
type+++++++
imageC1C2C2C2C2C2C4C4C4C4C8○D42+ 1+4
kernelC42.694C23(C22×C8)⋊C2C42.12C4C8×D4C86D4C22.26C24C4⋊D4C4.4D4C41D4C4⋊Q8C4C4
# reps1424418422162

Matrix representation of C42.694C23 in GL4(𝔽17) generated by

0100
1000
0040
0004
,
4000
0400
0040
0004
,
15000
01500
0020
00015
,
0400
13000
00160
0001
,
1000
0100
0004
0040
G:=sub<GL(4,GF(17))| [0,1,0,0,1,0,0,0,0,0,4,0,0,0,0,4],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[15,0,0,0,0,15,0,0,0,0,2,0,0,0,0,15],[0,13,0,0,4,0,0,0,0,0,16,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,4,0,0,4,0] >;

C42.694C23 in GAP, Magma, Sage, TeX

C_4^2._{694}C_2^3
% in TeX

G:=Group("C4^2.694C2^3");
// GroupNames label

G:=SmallGroup(128,1711);
// by ID

G=gap.SmallGroup(128,1711);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,219,675,1018,521,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=1,c^2=b,e^2=a^2,a*b=b*a,a*c=c*a,d*a*d=a^-1*b^2,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^2*c,e*d*e^-1=a^2*d>;
// generators/relations

׿
×
𝔽